Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36556827

RESUMO

The porosity of differently wetted carbonaceous material with disordered mesoporosity was investigated using low-field 1H NMR relaxometry. Spin−spin relaxation (relaxation time T2) was measured using the CPMG pulse sequence. We present a non-linear optimization method for the conversion of relaxation curves to the distribution of relaxation times by using non-specialized software. Our procedure consists of searching for the number of components, relaxation times, and their amplitudes, related to different types of hydrogen nuclei in the sample wetted with different amounts of water (different water-to-carbon ratio). We found that a maximum of five components with different relaxation times was sufficient to describe the observed relaxation. The individual components were attributed to a tightly bounded surface water layer (T2 up to 2 ms), water in small pores especially supermicropores (2 < T2 < 7 ms), mesopores (7 < T2 < 20 ms), water in large cavities between particles (20−1500 ms), and bulk water surrounding the materials (T2 > 1500 ms). To recalculate the distribution of relaxation times to the pore size distribution, we calculated the surface relaxivity based on the results provided by additional characterization techniques, such as thermoporometry (TPM) and N2/−196 °C physisorption.

2.
Gels ; 8(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35049543

RESUMO

Porous carbons, originated from resorcinol-formaldehyde (RF) gels, show high application potential. However, the kinetics and mechanism of RF condensation are still not well described. In this work, different methods (dynamic light scattering-DLS, Fourier transform infrared spectroscopy-FTIR, low field 1H nuclear magnetic resonance relaxometry-1H-NMR, and differential scanning calorimetry-DSC) were used to follow the isothermal RF condensation of mixtures varying in catalyst content (Na2CO3) and reactant concentration. The applicability and results obtained by the methods used differ significantly. The changes in functional groups can be followed by FTIR only at very early stages of the reaction. DLS enables the estimate of the growth of particles in reaction solution, but only before the solution becomes more viscous. Following the relaxation of 1H nuclei in water during RF condensation brings a different view on the system-this technique follows the properties of the present water that is gradually captured in polymeric gel. From this side, the process behaves similarly to the nucleation reaction, which is in contradiction to the n-order mechanism confirmed by other techniques. The widest range of applicability was found for DSC measurement of the freezing/melting behavior of the reaction mixture, which is possible to use without any limitations until full solidification. Furthermore, this approach enables us to follow the gradual formation and development of the gel through the intermediate undergoing glass transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...